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Interview videos
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Textual features

Example text: “So ah my interest kinda laid both in a
little bit of the health care | imagined | was going be
a Doctor growing up and ...”

Word count features with NLTK
Unique words in each interview

Linguistic Inquiry Word Count (LIWC)
based on psychological research

Sentiment analysis
of sentences with BERT
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LIWC Category

Examples

Non-fluencies

uh, umm, well

PosEmotion

hope, improve, kind, love

NegEmotion

bad, fool, hate, lose

Work

project, study, thesis, university




Sentiment analysis with BERT

Example sentence:

“And um as far as extracurriculars go |
do a few things.”

Expressions

Anger
Fear

Sadnessl

Happmess'
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Sentiment analysis with BERT

1. Finetune BERT for sentence sentiment classification on a balanced dataset

(classes: neutral, joy, anger, fear, sadness)
2. 83% accuracy for the test set
3. Predict sentiment of each interview sentence
4. Average sentiments over the interview

Example:

Interview p89 with a total of 31 sentences
neutral: 9, joy: 5, anger: O, fear: 15, sadness: 2
avg: neutral: 0.29, joy: 0.16, anger: 0.0, fear: 0.48, sadness: 0.06



Sentiment analysis with BERT

Interview p89 with a total of 31 sentences (bad example interview)
avg: neutral: 0.29, joy: 0.16, anger: 0.0, fear: 0.48, sadness: 0.06

BERT Joy feature predicts RecommendHirring label

BERT neutral feature predicts RecommendHirring label
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Unsuccessful attempt

e google speech to text output as basis for the textual analysis
e finetune BERT on the sentiment labels given in the dataset
e most categories of the LIWC (4/90 categories have been valuable)

Positive emo tions LIWC
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Separation of
speakers by voice
clustering

Speech to text
with google API
Matching between
google sentences
and transcript
sentences

Imestamp creation
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Dashboard

- Flask Application
- Overview with on-the-fly updates
- Detailed feedback for each domain

- General feedback with score

Go to general feedback

220 seconds

i

| guess | consider myself a leader in that regard.re a team player?And
then you know we had a couple weights and walked through the class
how to predict how it would work out and actually measured it and so
that was cool.All three of the students collaborated on what we should
talk about because we kind of were familiar with what everybody else
was talking about.

Expressions y=neutral (probability 0.954,
e [ score 3.081) top features
Contribution’  Feature
Highlighted
2098 i text (sum)
+0.987 <BIAS>

Sadness

i guess | consider myself a
o 02 04 06 08 10 leader in that regard.re a team
player?
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Intermediate




Video Features

e Facial Action Units detection
e Emotion Recognition

e \Valence and Arousal level
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Facial Action Units

OpenFace - 18 Facial Action Units

Facial Action Units AU Full name Prediction
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Emotion recognition

1st Approach:

Sadness

Rule-based approach based on EMFACS (Emotional —
Facial Action Coding System) and FACSAID (Facial Fear

Anger

Action Coding System Affect Interpretation Dictionary) Disgust
Contempt
Problem:

Biased, since some emotions needs much more AUs to
be detected

Emotion ¢ | Action units ¢

Happiness | 6+12

1+4+15
1+2+5B+26
1+2+4+5+7+20+26
4+5+7+23
9+15+17
R12A+R14A
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Emotion recognition

Use pre-trained FER model based on a CNN architecture

Expressions

E ’ Neutral

Surprise

{

Sadness
Happiness
Fear
Disgust

12-14-12 85:58:48PH Anger

0.0 0.2 0.4 0.6

0.8

1.0
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Density

Density

Emotions distribution
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Relationship FAU, Emotions and MIT labels

Smiled, Friendly,
Authentic

Not Authentic

— B - =

<:| w |:> Neutral |:>

Good
interview

Bad
interview
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Valence and Arousal level

Use pre-trained model with a CNN-RNN architecture

1.00 Valence & Arousal

0.75 — valence

-0.25

-0.50

-0.75

=1.005 100 200 300 400 500 600
Seconds
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Unsuccessful attempts

Rule-based approach for emotion detection

e Train a classifier:

- from emotion to recommended hiring label
- from facial action units to facial emotion
Use a smile detection model
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Audio Features

General preprocessing steps:

Separating Speakers (interviewer/interviewee) using
unsupervised clustering with PyAudioAnalysis
Separating each audio into chunks of 3s

Extract 150 low level features with PRAAT and
PyAudioAnalysis

Use these features to train models for further analysis
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Prosodic Feature

Description

Energy

FO MEAN

FO MIN

FO MAX

F0 Range

FOSD

Intensity MEAN
Intensity MIN
Intensity MAX
Intensity Range

Intensity SD
F1, F2, F3 MEAN

F1,F2, F3SD
F1,F2, F3BW
F2/F1 MEAN
F3/F1 MEAN
F2/F1SD
F3/F1SD
Jitter
Shimmer

Mean spectral energy.

Mean F0 frequency.

Minimum F0 frequency.
Maximum F0 frequency.
Difference between FO MAX and F0 MIN.
Standard deviation of F0.

Mean vocal intensity.

Minimum vocal intensity.
Maximum vocal inlcnsil.'\".
Difference between max and
min intensity.

Standard deviation.

Mean frequencies of the first 3
formants: F1, F2, and F3.
Standard deviation of F1, F2, F3.
Average bandwidth of F1, F2, F3.
Mean ratio of F2 and F1.

Mean ratio of F3 and F1.
Standard deviation of F2/F1.
Standard deviation of F3/F1.
Irregularities in FO frequency.
Irregularities in intensity.
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Sentiment Analysis

Confusion Matrix

Training a multiple ML models on a
classification dataset with 7 emotions
(Anger, Happiness, Fear, Sadness,
Disgust, Calmness, Surprise)
Accuracy of the SVM model 70%
Compute a class for each chunk of the
interview and aggregate the results
Test it on the MIT dataset

Actual Labels

- 1000

- 800

10

- 600

fear

3 - 400

happy

sad

-200

19 2 12 14 28 4 437

surprise

! | ! | ' | '
angry calm disgust fear happy sad surprise
Predicted Labels
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Density

Density

Sentiment Analysis

Sentiment

Correlations
with scores

P-values
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Fluency classification

Confusion Matrix

e Using a dataset containing 1409 audio files
classified into 3 classes (low_fluency,
intermediate_fluency, high_fluency)

e Training a SVM model for the classification.

Obtained accuracy: 88%

Actual Labels

e After testing this model on the MIT dataset,
most audio are classified into intermediate

and high fluency.

' |
high ~ interme diate
Predicted Labels
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Density
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Additional high level features

Using the libraries Myprosdoy and Praat
Features:
- number_ of syllables

- number_of pauses

- rate_of speech

- speaking_duration

- articulation_rate

- balance
For feedback: compute the mean and standard deviation for interviews with
good score and check if the new interview is in the 50% percentile around the
mean
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mfcc 9 mean > 0.63 -

mfcc_3 std <=-0.62 -

delta energy std > 0.39 -

mfcc 5 std > 0.63 -

spectral_spread_std <=-0.62 -

LIME explainer

Local explanation for class intermediate

-0.100 -0.075 -0.050 -0.025 0000 0025 0050 0075

delta mfcc_1_mean > 0.52 -

mfcc 4 mean <=-0.65 -

chroma_3_mean <=-0.78 -

-0.56 < delta mfcc 1 std <=-0.21 -

delta spectral_rolloff std > 0.70 -

Local explanation for class angry

-006 -004 -0.02 0.00 0.02 0.04
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Unsuccessful attempts

Clustering:
e Used different clustering algorithms: kmeans, mean shift, Gaussian mixture, spectral
clustering
e Used only extreme data for fitting the algorithms
e Results: no clustering results where good scores are together and bad score are together
Regression:
e Used different models: NN, SVR, random forest, Gradient Boosting

e Results: bad MSE scores, models predicting always the average
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Live Demo

26



Issues with our current approach

Unreliable annotations

Lack of data (138 interviews)

Biased data (no really bad interviews)

Averaging scores for an entire interview is not optimal

No rigorous way to assess the generalizability of the models on the MIT dataset
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